
www.umbc.edu 

CMSC202 
 Computer Science II for Majors 

 
Lecture 10 and 11 –  

Inheritance 
 

Dr. Katherine Gibson 



www.umbc.edu 

Last Class We Covered 

• Professor Chang substitute taught 
 

• Allocation methods 

– Static, automatic, dynamic 

– new and delete 

• Dynamically allocating arrays 

– Constructors and destructors 
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Any Questions from Last Time? 



www.umbc.edu 

Today’s Objectives 

• To review the exam results 
 

• To understand the relationships between objects 
 

• To begin learning about inheritance 

– To cover what is being inherited 

– To understand how inheritance and  
access to member variables interact 
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Exam 1 Results 
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Code Reuse 
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Code Reuse 

• Important to successful coding 

 

• Efficient 

– No need to reinvent the wheel 

• Error free 

– Code has been previously used/tested 

– (Not guaranteed, but more likely) 
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Code Reuse Examples 

• What are some ways we reuse code? 

– functions 

– classes 

 

 

• Any specific examples? 

– calling Insert() and a modified Delete() for Move() 

– calling accessor functions inside a constructor 
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Code Reuse Examples 

• What are some ways we reuse code? 

– Functions 

–Classes 

– Inheritance – what we’ll be covering today 

 

• Any specific examples? 
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Object Relationships 
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Refresher on Objects 

• Objects are what we call an instance of a class 

 

• For example: 

– Rectangle is a class 

– r1 is a variable of type Rectangle 

– r1 is a Rectangle object 
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Object Relationships 

• There are two types of object relationships 

 

• is-a 

– inheritance 

 

• has-a 

– composition 

– aggregation 

 

both are forms 
of association 
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Inheritance Relationship 

A Car is-a Vehicle 
 

• This is called inheritance 
 

• The Car class inherits from the Vehicle class 
 

• Vehicle is the general class, or the parent class 

• Car is the specialized class, or child class, that 
inherits from Vehicle 
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Inheritance Relationship Code 

class Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numAxles; 

    int    m_numWheels; 

    int    m_maxSpeed; 

    double m_weight; 

    // etc 

} ; 
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all Vehicles have 
axles, wheels, a 
max speed, and a 
weight 
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Inheritance Relationship Code 

class Car { 

   

 

 

 

 

 

 

 

} ; 

 
15 



www.umbc.edu 

Inheritance Relationship Code 

class Car: public Vehicle { 

   

 

 

 

 

 

 

 

} ; 
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don’t forget the 
colon here! 

Car inherits from 
the Vehicle class 
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Inheritance Relationship Code 

class Car: public Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numSeats; 

    double m_MPG; 

    string m_color; 

    string m_fuelType; 

    // etc 

} ; 
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all Cars have a 
number of seats, a 
MPG value, a color, 
and a fuel type 
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Inheritance Relationship Code 

class Car:  

  public Vehicle { /*etc*/ }; 

class Plane:  

  public Vehicle { /*etc*/ }; 

class SpaceShuttle:  

  public Vehicle { /*etc*/ }; 

class BigRig:  

  public Vehicle { /*etc*/ }; 
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Composition Relationship 

A Car has-a Chassis 
 

• This is called composition 
 

• The Car class contains an object of type Chassis 
 

• A Chassis object is part of the Car class 

• A Chassis cannot “live” out of context of a Car 
– If the Car is destroyed, the Chassis is also destroyed 
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Composition Relationship Code 

class Chassis { 

  public: 

    // functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 
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all Chassis have a 
material, a weight, 
and a maxLoad 
they can hold 
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Composition Relationship Code 

class Chassis { 

  public: 

    // functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 
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also, notice 
that there is 
no inheritance 
for the Chassis 
class 
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Composition Relationship Code 

class Car: public Vehicle { 

  public: 

    // functions 

  private: 

    // member variables, etc. 

 

    // has-a (composition) 

    Chassis m_chassis; 

} ; 
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Aggregation Relationship 

a Car has-a Driver 
 

 

• this is called aggregation 
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Aggregation Relationship 

A Car has-a Driver 
• This is called aggregation 

 

• The Car class is linked to an object of type Driver 
 

• Driver class is not directly related to the Car class 

• A Driver can live out of context of a Car 

• A Driver must be “contained” in the Car  
object via a pointer to a Driver object 
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Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 
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Driver itself is a child 
class of Person 
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Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 
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Driver inherits all of Person’s member 
variables (Date m_age, string m_name, 
etc.) so they aren’t included in the Driver 
child class 

Driver itself is a child 
class of Person 
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Aggregation Relationship Code 

class Car: public Vehicle { 

  public: 

    // functions 

  private: 

    // member variables, etc. 

 

    // has-a (aggregation) 

    Person *m_driver; 

} ; 
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Visualizing Object Relationships 

• On paper, draw a representation of how the 
following objects relate to each other 

• Make sure the type of relationship is clear 
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• Engine 
• Driver 
• Person 
• Owner 
• Chassis 

• Car 
• Vehicle 
• BigRig 
• Rectangle 
• SpaceShuttle 
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Inheritance 
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Inheritance Access Specifiers 

• inheritance can be done via public, private, or 
protected 

• we’re going to focus exclusively on public 
 

• you can also have multiple inheritance 

– where a child class has more than one parent 

• we won’t be covering this 
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Hierarchy Example 

Vehicle 
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Hierarchy Example 

Vehicle 

etc. Car Plane BigRig 
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Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 
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Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 

Sp
e

ci
al

iz
at

io
n
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Hierarchy Vocabulary 

• more general class (e.g., Vehicle) can be called: 

– parent class 

– base class 

– superclass 

• more specialized class (e.g., Car) can be called: 

– child class 

– derived class 

– subclass 
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Hierarchy Details 

• parent class contains all that is common among 
its child classes (less specialized) 

– Vehicle has a maximum speed, a weight, etc. 
because all vehicles have these 

 

• member variables and functions of the parent 
class are inherited by all of its child classes 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• use 

– the child class takes advantage of the parent class 
behaviors exactly as they are 

• like the mutators and accessors from the parent class 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• extend 

– the child class creates entirely new behaviors 
• a RepaintCar() function for the Car child class 

• mutators/accessors for new member variables 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• replace 

– child class overrides parent class’s behaviors 

• (we’ll cover this later today) 
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Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 
41 



www.umbc.edu 

What is Inherited 

Vehicle Class 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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What is Inherited 

Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 
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What is Inherited 

Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

48 

• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

49 

• child class 
members 
(functions  

& variables) ? 
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What is Inherited 

Car Class 

• public  
fxns&vars 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• protected fxns&vars 
• private variables 

• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• child class 
members 
(functions  

& variables) 

• public  
fxns&vars 

• protected  
fxns&vars 

 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• private variables 
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What is Inherited 

Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 
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What is Inherited 

Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

can access and invoke, but 
are not directly inherited 56 

• child class 
members 
(functions  

& variables) 
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Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 
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Handling Access 

• Child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

– but not private member variables/functions 

 

• How should we set the access modifier for 
parent member variables we want the child 
class to be able to access? 
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Handling Access 

• Do not make these variables protected! 

– Leave them private! 

 

• Instead, child class uses public or protected 
functions when interacting with parent 
variables 

– Reason we implement accessors and mutators 
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Announcements 

• Project 2 is out – you should have started! 

– It is due Thursday, March 10th 
 

 

• Nothing over Spring Break 

– Enjoy your temporary freedom! 
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