
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 10 and 11 –

Inheritance

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Professor Chang substitute taught

• Allocation methods

– Static, automatic, dynamic

– new and delete

• Dynamically allocating arrays

– Constructors and destructors

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To review the exam results

• To understand the relationships between objects

• To begin learning about inheritance

– To cover what is being inherited

– To understand how inheritance and
access to member variables interact

4

www.umbc.edu

Exam 1 Results

www.umbc.edu

Code Reuse

www.umbc.edu

Code Reuse

• Important to successful coding

• Efficient

– No need to reinvent the wheel

• Error free

– Code has been previously used/tested

– (Not guaranteed, but more likely)

7

www.umbc.edu

Code Reuse Examples

• What are some ways we reuse code?

– functions

– classes

• Any specific examples?

– calling Insert() and a modified Delete() for Move()

– calling accessor functions inside a constructor

8

www.umbc.edu

Code Reuse Examples

• What are some ways we reuse code?

– Functions

–Classes

– Inheritance – what we’ll be covering today

• Any specific examples?

9

www.umbc.edu

Object Relationships

www.umbc.edu

Refresher on Objects

• Objects are what we call an instance of a class

• For example:

– Rectangle is a class

– r1 is a variable of type Rectangle

– r1 is a Rectangle object

11

www.umbc.edu

Object Relationships

• There are two types of object relationships

• is-a

– inheritance

• has-a

– composition

– aggregation

both are forms
of association

12

www.umbc.edu

Inheritance Relationship

A Car is-a Vehicle

• This is called inheritance

• The Car class inherits from the Vehicle class

• Vehicle is the general class, or the parent class

• Car is the specialized class, or child class, that
inherits from Vehicle

13

www.umbc.edu

Inheritance Relationship Code

class Vehicle {

 public:

 // functions

 private:

 int m_numAxles;

 int m_numWheels;

 int m_maxSpeed;

 double m_weight;

 // etc

} ;

14

all Vehicles have
axles, wheels, a
max speed, and a
weight

www.umbc.edu

Inheritance Relationship Code

class Car {

} ;

15

www.umbc.edu

Inheritance Relationship Code

class Car: public Vehicle {

} ;

16

don’t forget the
colon here!

Car inherits from
the Vehicle class

www.umbc.edu

Inheritance Relationship Code

class Car: public Vehicle {

 public:

 // functions

 private:

 int m_numSeats;

 double m_MPG;

 string m_color;

 string m_fuelType;

 // etc

} ;

17

all Cars have a
number of seats, a
MPG value, a color,
and a fuel type

www.umbc.edu

Inheritance Relationship Code

class Car:

 public Vehicle { /*etc*/ };

class Plane:

 public Vehicle { /*etc*/ };

class SpaceShuttle:

 public Vehicle { /*etc*/ };

class BigRig:

 public Vehicle { /*etc*/ };

18

www.umbc.edu

Composition Relationship

A Car has-a Chassis

• This is called composition

• The Car class contains an object of type Chassis

• A Chassis object is part of the Car class

• A Chassis cannot “live” out of context of a Car
– If the Car is destroyed, the Chassis is also destroyed

19

www.umbc.edu

Composition Relationship Code

class Chassis {

 public:

 // functions

 private:

 string m_material;

 double m_weight;

 double m_maxLoad;

 // etc

} ;

20

all Chassis have a
material, a weight,
and a maxLoad
they can hold

www.umbc.edu

Composition Relationship Code

class Chassis {

 public:

 // functions

 private:

 string m_material;

 double m_weight;

 double m_maxLoad;

 // etc

} ;

21

also, notice
that there is
no inheritance
for the Chassis
class

www.umbc.edu

Composition Relationship Code

class Car: public Vehicle {

 public:

 // functions

 private:

 // member variables, etc.

 // has-a (composition)

 Chassis m_chassis;

} ;

22

www.umbc.edu

Aggregation Relationship

a Car has-a Driver

• this is called aggregation

23

www.umbc.edu

Aggregation Relationship

A Car has-a Driver
• This is called aggregation

• The Car class is linked to an object of type Driver

• Driver class is not directly related to the Car class

• A Driver can live out of context of a Car

• A Driver must be “contained” in the Car
object via a pointer to a Driver object

24

www.umbc.edu

Aggregation Relationship Code

class Driver: public Person {

 public:

 // functions

 private:

 Date m_licenseExpire;

 string m_licenseType;

 // etc

} ;

25

Driver itself is a child
class of Person

www.umbc.edu

Aggregation Relationship Code

class Driver: public Person {

 public:

 // functions

 private:

 Date m_licenseExpire;

 string m_licenseType;

 // etc

} ;

26

Driver inherits all of Person’s member
variables (Date m_age, string m_name,
etc.) so they aren’t included in the Driver
child class

Driver itself is a child
class of Person

www.umbc.edu

Aggregation Relationship Code

class Car: public Vehicle {

 public:

 // functions

 private:

 // member variables, etc.

 // has-a (aggregation)

 Person *m_driver;

} ;

27

www.umbc.edu

Visualizing Object Relationships

• On paper, draw a representation of how the
following objects relate to each other

• Make sure the type of relationship is clear

28

• Engine
• Driver
• Person
• Owner
• Chassis

• Car
• Vehicle
• BigRig
• Rectangle
• SpaceShuttle

www.umbc.edu

Inheritance

www.umbc.edu

Inheritance Access Specifiers

• inheritance can be done via public, private, or
protected

• we’re going to focus exclusively on public

• you can also have multiple inheritance

– where a child class has more than one parent

• we won’t be covering this

30

www.umbc.edu

Hierarchy Example

Vehicle

31

www.umbc.edu

Hierarchy Example

Vehicle

etc. Car Plane BigRig

32

www.umbc.edu

Hierarchy Example

Vehicle

SUV

etc.

Sedan

Car Plane BigRig

Jeep Van

33

www.umbc.edu

Hierarchy Example

Vehicle

SUV

etc.

Sedan

Car Plane BigRig

Jeep Van

Sp
e

ci
al

iz
at

io
n

34

www.umbc.edu

Hierarchy Vocabulary

• more general class (e.g., Vehicle) can be called:

– parent class

– base class

– superclass

• more specialized class (e.g., Car) can be called:

– child class

– derived class

– subclass

35

www.umbc.edu

Hierarchy Details

• parent class contains all that is common among
its child classes (less specialized)

– Vehicle has a maximum speed, a weight, etc.
because all vehicles have these

• member variables and functions of the parent
class are inherited by all of its child classes

36

www.umbc.edu

Hierarchy Details

• child classes can use, extend, or replace the
parent class behaviors

37

www.umbc.edu

Hierarchy Details

• child classes can use, extend, or replace the
parent class behaviors

• use

– the child class takes advantage of the parent class
behaviors exactly as they are

• like the mutators and accessors from the parent class

38

www.umbc.edu

Hierarchy Details

• child classes can use, extend, or replace the
parent class behaviors

• extend

– the child class creates entirely new behaviors
• a RepaintCar() function for the Car child class

• mutators/accessors for new member variables

39

www.umbc.edu

Hierarchy Details

• child classes can use, extend, or replace the
parent class behaviors

• replace

– child class overrides parent class’s behaviors

• (we’ll cover this later today)

40

www.umbc.edu

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

• Homework and Project

41

www.umbc.edu

What is Inherited

Vehicle Class

42

www.umbc.edu

What is Inherited

Vehicle Class

• public fxns&vars

43

www.umbc.edu

What is Inherited

Vehicle Class

• public fxns&vars
• protected fxns&vars

44

www.umbc.edu

What is Inherited

Vehicle Class

• public fxns&vars
• protected fxns&vars
• private variables

• private functions

45

www.umbc.edu

What is Inherited

Vehicle Class

• public fxns&vars
• protected fxns&vars
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

46

www.umbc.edu

What is Inherited

Car Class

• public fxns&vars
• protected fxns&vars
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

Vehicle Class

47

www.umbc.edu

What is Inherited

Car Class

• public fxns&vars
• protected fxns&vars
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

Vehicle Class

48

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• public fxns&vars
• protected fxns&vars
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

Vehicle Class

49

• child class
members
(functions

& variables) ?

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

Vehicle Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

50

• protected fxns&vars
• private variables

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• child class
members
(functions

& variables)

• public
fxns&vars

• protected
fxns&vars

Vehicle Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

51

• private variables

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

52

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

53

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

not (directly) accessible
by Car objects

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

54

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

not (directly) accessible
by Car objects

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

55

• child class
members
(functions

& variables)

www.umbc.edu

What is Inherited

Car Class

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

not (directly) accessible
by Car objects

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

can access and invoke, but
are not directly inherited 56

• child class
members
(functions

& variables)

www.umbc.edu

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

• Homework and Project

57

www.umbc.edu

Handling Access

• Child class has access to parent class’s:

– public member variables/functions

– protected member variables/functions

– but not private member variables/functions

• How should we set the access modifier for
parent member variables we want the child
class to be able to access?

58

www.umbc.edu

Handling Access

• Do not make these variables protected!

– Leave them private!

• Instead, child class uses public or protected
functions when interacting with parent
variables

– Reason we implement accessors and mutators

59

www.umbc.edu

Announcements

• Project 2 is out – you should have started!

– It is due Thursday, March 10th

• Nothing over Spring Break

– Enjoy your temporary freedom!

60

